*모든 지원자는 KAIST 및 바이오및뇌공학과 입학 기준 (영어, 학점 등)을 통과할 수 있어야 함.
1. 연구실 지원 서류 (application documents for lab)
- 석사 지원자는 입시 후, 박사 지원자는 입시 전 연구실에 지원함.
(MS applicants apply after KAIST admission, PhD applicants apply before KAIST admission.
1) 자기 소개서 (GPA, Courses taken, Research experiences, Research outputs)
- 학력, 경력, 이수 과목 (학점), 직접 수행해본 프로젝트, 개발, 실험 등 본 연구실과 관련된 학습 및 연구능력 설명
- 저널 게재, 특허 출원/등록 사항 및 주저자 여부 등 본인 기여도 (해당자)
2) 연구(학업) 계획서 (Research Plan specifically in SynBi lab based on previous study and research experiences)
- 본 연구실 연구 내용 중 희망하는 연구 목표
- 학습 및 연구 추진계획 (전략 및 방법 - 본인의 기존 경력을 반영)
- 석사 또는 박사 후 희망 진로
3. Prerequisites
1) Common prerequisites for all MSc and Ph.D. applicants
Course: Prob & Statistics, Bioinformatics, Cell Biology and Biochemistry
IT Skill Set: R programming, DB SQL programming, Linux shell scripting, Any of Python, Java, or C++ programming
Research: Bioinformatics or Omics analysis (term project or individual study level)
2) PhD applicants pursuing bioinformatics engineer in SynBi lab
*will develop informatics or computational methods to predict diseaes markers or drug candidates
Course: Common prerequisites + Linear Algebra, Machine Learning (alternatively AI or Deep Learning), Database, and
Differential Eq. (alternatively vector calculus or multivariate calculus), Algorithm (alternatively Discrete Math and Data Structure),
IT Skill Set: Algorithm implementation, the construction of Oracle DB and its web interface, Linux system management
Research: Development or analysis in machine learning, data mining, artificial intelligence, or equivalent methods in CS, EE, or Math fields
(whole thesis level or Journal/Conference paper level. Subject does not need to be BI)
3) PhD applicants pursuing multi-displinary biologist in SynBi lab
*will obtain novel disease markers of drug candidates by existing informatics methods and prove them by experimental validations.
Course: Common prerequisites + Organic Chemistry, Advanced biology, Pharmacology or Chemistry courses.
BT Skill Set: Cell biology or Biochemistry experiments with statistical analysis of experimental data.
Research: Molecular analysis of gene function or drug responses in a cell model or animal/human tissue.
(whole thesis level or Journal/Conference paper level)
4. 연락처: 이관수 교수 gwansuyi@kaist.ac.kr
[Additional Helpful Background]
A. Bioinformatics Engineer of SynBi lab: any of
- Course: Systems Biology (Systems Pharmacology), Pharmaceutical Chemistry, Computational Chemistry (Molecular sturcture modeling),
Network analysis, Applied Mathematics (Numerical Analysis, Mathematical Statistics, Stochastic Process, Signals & Systems)
- IT Skill Set: Parallel computing, Big-data computing
- Research: Specific research on artificial intelligence applications
B. Multi-displinary Biologist of SynBi lab: any of
- Course: Functional Genomics (Proteomics), Pharmaceutical Chemistry, Molecular Genetics, Immunology, Pharmacology
- BT Skill Set: Eukaryotic cell culture with molecular or functional assay in a cell model, Genetic or protein engineering.
(Molecular probe construction/detection, Confocal/HCS/multiplex experiment)
- Research: Gene function or drug response study with systems biologiy approach (omics experiment & analysis)
번호 | 제목 | 글쓴이 | 날짜 | 조회 수 |
---|---|---|---|---|
» | 석박사 학위 지원자 가이드 | SynBI-admin | 2017.07.29 | 7060 |